Spectral coarsening of geometric operators
نویسندگان
چکیده
منابع مشابه
Hill Operators and Spectral Operators of Scalar
We derive necessary and sufficient conditions for a one-dimensional periodic Schrödinger (i.e., Hill) operator H = −d 2 /dx 2 + V in L 2 (R) to be a spectral operator of scalar type. The conditions demonstrate the remarkable fact that the property of a Hill operator being a spectral operator is independent of smoothness (or even analyticity) properties of the potential V. R ´ ESUMÉ. Quand un op...
متن کاملSpectral operators of matrices
The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool to model many important applications involving structured low rank matrices within and beyond the optimization community. This trend can be credited to some extent to the exciting developments in emerging fields such as compressed sensing. The Löwner operator, which generates a matrix valu...
متن کاملSpectral Properties of Operators
It is well known that the identity is an operator with the following property: if the operator, initially defined on an n-dimensional Banach space V , can be extended to any Banach space with norm 1, then V is isometric to (n) ∞ . We show that the set of all such operators consists precisely of those with spectrum lying in the unit circle. This result answers a question raised in [5] for comple...
متن کاملGeometric properties of two-dimensional coarsening with weak disorder
The domain morphology of weakly disordered ferromagnets, quenched from the hightemperature phase to the low-temperature phase, is studied using numerical simulations. We find that the geometrical properties of the coarsening domain structure, e.g. the distributions of hull enclosed areas and domain perimeter lengths, are described by a scaling phenomenology in which the growing domain scale R(t...
متن کاملAn algorithmic and a geometric characterization of Coarsening At Random
We show that the class of conditional distributions satisfying the coarsening at Random (CAR) property for discrete data has a simple and robust algorithmic description based on randomized uniform multicovers: combinatorial objects generalizing the notion of partition of a set. However, the complexity of a given CAR mechanism can be large: the maximal “height” of the needed multicovers can be e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Graphics
سال: 2019
ISSN: 0730-0301,1557-7368
DOI: 10.1145/3306346.3322953